259 research outputs found

    Contour regression: A general approach to dimension reduction

    Full text link
    We propose a novel approach to sufficient dimension reduction in regression, based on estimating contour directions of small variation in the response. These directions span the orthogonal complement of the minimal space relevant for the regression and can be extracted according to two measures of variation in the response, leading to simple and general contour regression (SCR and GCR) methodology. In comparison with existing sufficient dimension reduction techniques, this contour-based methodology guarantees exhaustive estimation of the central subspace under ellipticity of the predictor distribution and mild additional assumptions, while maintaining \sqrtn-consistency and computational ease. Moreover, it proves robust to departures from ellipticity. We establish population properties for both SCR and GCR, and asymptotic properties for SCR. Simulations to compare performance with that of standard techniques such as ordinary least squares, sliced inverse regression, principal Hessian directions and sliced average variance estimation confirm the advantages anticipated by the theoretical analyses. We demonstrate the use of contour-based methods on a data set concerning soil evaporation.Comment: Published at http://dx.doi.org/10.1214/009053605000000192 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Consistent Computation of First- and Second-Order Differential Quantities for Surface Meshes

    Full text link
    Differential quantities, including normals, curvatures, principal directions, and associated matrices, play a fundamental role in geometric processing and physics-based modeling. Computing these differential quantities consistently on surface meshes is important and challenging, and some existing methods often produce inconsistent results and require ad hoc fixes. In this paper, we show that the computation of the gradient and Hessian of a height function provides the foundation for consistently computing the differential quantities. We derive simple, explicit formulas for the transformations between the first- and second-order differential quantities (i.e., normal vector and principal curvature tensor) of a smooth surface and the first- and second-order derivatives (i.e., gradient and Hessian) of its corresponding height function. We then investigate a general, flexible numerical framework to estimate the derivatives of the height function based on local polynomial fittings formulated as weighted least squares approximations. We also propose an iterative fitting scheme to improve accuracy. This framework generalizes polynomial fitting and addresses some of its accuracy and stability issues, as demonstrated by our theoretical analysis as well as experimental results.Comment: 12 pages, 12 figures, ACM Solid and Physical Modeling Symposium, June 200

    Deep Extreme Multi-label Learning

    Full text link
    Extreme multi-label learning (XML) or classification has been a practical and important problem since the boom of big data. The main challenge lies in the exponential label space which involves 2L2^L possible label sets especially when the label dimension LL is huge, e.g., in millions for Wikipedia labels. This paper is motivated to better explore the label space by originally establishing an explicit label graph. In the meanwhile, deep learning has been widely studied and used in various classification problems including multi-label classification, however it has not been properly introduced to XML, where the label space can be as large as in millions. In this paper, we propose a practical deep embedding method for extreme multi-label classification, which harvests the ideas of non-linear embedding and graph priors-based label space modeling simultaneously. Extensive experiments on public datasets for XML show that our method performs competitive against state-of-the-art result
    • …
    corecore